Ein Beitrag zur Kristallstruktur von Ba₂ScAlO₅ und Sr₂Sc_{0,5}Al_{1,5}O₅

M. Rath und Hk. Müller-Buschbaum

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstraße 40-60, W-2300 Kiel (Deutschland)

(Eingegangen am 14 Mai 1992)

Abstract

Single crystals of (I) Ba₂ScAlO₅ and (II) Sr₂Sc_{0.5}Al_{1.5}O₅ were prepared by high temperature reactions and investigated by the X-ray technique. (I) belongs to the BaTiO₃ type (a = 5.7965 Å; c = 14.5398 Å; space group, D⁴_{6h} (P6₃/mmc); Z=3) and (II) show a cubic perovskite structure (a = 7.9078 Å; space group, T⁶_h (Pa₃); Z=4). The reinvestigation of (I) shows only one underoccupied point position of O(2). The substitution of Ba²⁺ by Sr²⁺ changes the 6L-type structure of (I) to the classic cubic perovskite with partially ordered occupation of octahedra holes of (II).

Zusammenfassung

Einkristalle von (I) Ba₂ScAlO₅ und (II) Sr₂Sc_{0.5}Al_{1.5}O₅ wurden durch Hochtemperaturreaktionen erhalten und röntgenographisch untersucht. (I) kristallisiert im hexagonalen BaTiO₃-Typ (a = 5,7965 Å; c = 14,5398 Å; Raumgruppe, D⁴_{6h} ($P6_3/mmc$); Z = 3). (II) kristallisiert in einer kubischen Perowskitstruktur (a = 7,9078 Å; Raumgruppe, T⁶_h (Pa3); Z = 4). Die Nachuntersuchung von (I) zeigt im Gegansatz zur bisherigen Auffassung nur eine unterbesetzte Punktlage für O(2). Der Austausch von Ba²⁺ durch Sr²⁺ verändert die 6L-Struktur von (I) zum klassischen kubischen Perowskit mit partiell geordneter Besetzung der Oktaederlücken in (II).

1. Einleitung

Zu den gut untersuchten Oxometallaten der Erdalkalimetalle (A) mit der Summenformel $A_2M_2O_5$ $(M \equiv dreiwertige Haupt- oder Nebengruppenmetalle)$ gehören unter anderen Brownmillerite wie Ca₂Fe₂O₅ [1, 2], $Sr_2Fe_2O_5$, $Ba_2Fe_2O_5$ [3-5], $Ca_2Fe_2O_5$ [6, 7], Sr₂In₂O₅ [8], Ba₂Tl₂O₅ [9] und solche Stoffe wie Ba_2LaMO_5 (M = Al, Ga), die im Cs₃CoO₅-Typ [10] kristallisieren. Daneben gibt es Substanzen der Zusammensetzung Ba_2LnMO_5 mit $Ln \equiv Nd-Lu$, die einen vom Cs₃CoO₅-Typ abweichenden Aufbau [11] zeigen. Einen eigenen Strukturtyp bildet die Hochtemperaturform α -Ba₂ScAlO₅ [12], der sich durch statistisch unterbesetzte Punktlagen in der O²⁻-Teilstruktur auszeichnet. Dieser Befund bedarf einer näheren Untersuchung, da die bisherige Zuordnung von O²⁻ in Verbindung mit den beobachteten sehr großen Temperaturfaktoren diesen Ausschnitt der Kristallstruktur nur unvollkommen beschreibt. Bekannt ist ferner der Aufbau der Tieftemperaturform β-Ba₂ScAlO₅ [13], der unabhängig auch an Ba₂InAlO₅ [14] beobachtet wurde.

Unbekannt sind Verbindungen zu den letztgenannten Kristallstrukturen mit den kleineren Erdalkalimetallen und solche mit unterschiedlichen Mengen an Sc^{3+} neben Al^{3+} auf den wiederum statistisch besetzten Oktaederplätzen.

Vorliegender Beitrag berichtet über eine Studie an Ba_2ScAlO_5 sowie über eine Phase mit unterschiedlichen Anteilen an Sc^{3+} und Al^{3+} , die zugleich erstmals das kleinere Erdalkalimetallion Sr^{2+} enthält.

2. Darstellung von (I) Ba₂ScAlO₅- und (II) Sr₂Sc_{0,5}Al_{1,5}O₅-Einkristallen mit anschließender röntgenographischer Untersuchung

Zur Darstellung von **(I)** wurden $BaCO_3:Sc_2O_3:Al_2O_3 = 4:1:1$, für (II) entsprechend $SrCO_3:Sc_2O_3:Al_2O_3 = 4:1:1$ innig vermengt, zu Tabletten verpreßt und 48 h bei 900 °C getempert. Anschließend wurde die Temperatur auf 1650 °C gesteigert, 8 Tage aufrecht erhalten und anschließend mit einer Abkühlrate von 1 °C min⁻¹ bis auf 600 °C abgekühlt. Auf der Tablettenoberfläche hatten sich jeweils gelbe Kristalle gebildet, die mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) analytisch untersucht wurden. Das Verhältnis der Elemente wurde mit stan-

	(I)	(II)	
Kristallsystem	hexagonal	kubisch	
Raumgruppe	D_{6h}^4 (P6 ₃ /mmc)	T_{h}^{6} (pa3)	
Gitterkonstanten (Å)			
a	5,7965(9)	7,9078(4)	
с	14,539(28)		
Zellvolumen V (Å ³)	423,08	494,50	
Zahl der Formeleinheiten Z	3	4	
Diffraktometer	4-Kreis, Philips-STOE PW 1100	4-Kreis, Siemens AED2	
Strahlung, Monochromator	Mo Kα, Graphit		
Korrekturen	Untergrund-, Polarisations- und Lorentzfaktor, Psi Scan Program, EMPIR [15]		
20-Bereich (deg)	5–70°		
Abtastung	$\Omega/2 heta$		
Schwittweite 2θ (deg)	0,04		
Zeit/Schritt (s)	1,0-4,0	1,0-8,0	
Anzahl gemessener Reflexe	660	432	
Anzahl verwendeter Reflexe	237 $(F_0 > 3\sigma(F_0))$	96 $(F_0 > 1\sigma(F_0))$	
Parameteranzahl	16	15	
Gütefaktor bei isotroper Verfeinerung			
R	0,058	0,091	
R _w		0,054	
$w = 0,1788/\sigma^2(F);$		·	
$R_{\rm w} = \sum w^{1/2} (\ F_{\rm o}\ - F_{\rm c}\) / \sum w^{1/2} F_{\rm o} .$			

TABELLE 1. Kristallographische Daten und Meßbedingungen für (I) Ba2ScAlO5 und (II) Sr2Sc0,5Al1,5O5

TABELLE 2. Lageparameter und isotrope Temperaturfaktoren für (I) Ba₂ScAlO₅ bezeihungsweise (II) Sr₂Sc₀₅Al₁₅O₅

	Lage	X/A	Y/A	Z/C	<i>B</i> (Å ²)
(I)			······································		
Ba(1)	2b	0,0	0,0	0,25	1,33(5)
Ba(2)	4f	0,3333	0,6667	0,5844(2)	1,25(3)
Sc	2a	0,0	0,0	0,0	0,30(9)
0,25Sc/0,75Al	4f	0,3333	0,6667	0,1447(5)	1,13(10)
O(1)	12k	0,167(2)	0,334(4)	0,088(1)	1,28(17)
0,5 O(2)	6h	0,490(7)	0,980(13)	0,25	1,12(24)
(II)					
Sr	8c	0,2555(26)	0,2556(3)	0,2556(3)	1,51(15)
0,5Sc/0,5Al	4b	0,5	0,5	0,5	1,88(45)
Al	4a	0,0	0,0	0,0	1,58(52)
0,833O	24d	0,226(4)	0,011(7)	0,014(6)	4,01(53)

Standardabweichungen in Klammern.

dardfreier Meßtechnik für (I) zu Ba:Sc:Al=2:1:1, beziehungsweise für (II) zu Sr:Sc:Al=2:0,5:1,5 bestimmt.

Mit Weissenbergaufnahmen und Vierkreisdiffraktometermessungen wurden die Gitterkonstanten und systematisch beobachteten Reflexe bestimmt. Die kristallographischen Daten und die Meßbedingungen sind in Tabelle 1 zusammengestellt. Die Tabelle 2 enthält die mit dem Program SHELX-76 [16] verfeinerten Parameter. Die sich aus den Parametern ergebenden Metall-Sauerstoff-Abstände sind in Tabelle 3 aufgeführt.

3. Diskussion

Die röntgenographische Nachuntersuchung von α -Ba₂ScAlO₅ zeight, daß die ursprüngliche Strukturaufklärung [12] den Aufbau dieser Hochtemperaturform

TABELLE 3. Interatomare Abstände für (I) Ba_2ScAlO_5 und (II) $Sr_2Sc_{0,5}Al_{1,5}O_5$

(I)		(11)		
Atome	Interatomare Abstände (Å)	Atome	Interatomare Abstände (Å)	
Ba(1)-O(1) -O(2)	2,894(17) (6×) 2,903(37) (6×)	Sr–O	2,747(7) (3×) 2,796(9) (3×) 2,804(7) (3×)	
Ba(2)–O(1) –O(1) –O(2)	2,899(12) (6×) 3,009(17) (3×) 3,028(29) (3×)		2,862(7) (3×)	
ScO(1)	2,118(20) (6×)	Sc/Al-O	2,159(4) (6×)	
Sc/Al–O(1) –O(2)	1,851(54) (3×) 2,154(64) (3×)	Al-O	1,797(4) (6×)	

Standardabweichungen in Klammern.

richting wiedergibt. Abbildung 1 zeight die Polyederanordnung im Bereich einer Elementarzelle. Die isoliert zueinander auftretenden Oktaeder um Sc^{3+} (weit schraffiert) sind durch flächenverknüpfte Oktaederdoppel (eng schraffiert) zu einer lockeren Gerüststruktur verbunden. Die M₂O₉-Oktaederdoppel sind statistisch mit Sc^{3+} und Al³⁺ im Verhältnis 0,25:0,75 besetzt. Die eingelagerten Ba²⁺-Ionen ergänzen zu einer Atomverteilung, wie sie in den 6L-Perowskiten beobachtet wurde.

Ein interessanter Gesichtspunkt am α -Ba₂ScAlO₅-Typ ist das in der Einleitung erwähnte lokale Sauerstoffdefizit. Zu dessen Erklärung wurden Unterbesetzungen und wegen der großen Temperaturfaktoren $(B=3,8; \text{ anisotrop } B_{11}=2,9; B_{33}=6,7)$ hohe Mobilität der O²⁻-Ionen angenommen [12]. Vorliegende Untersuchung zeigt, daß infolge der vom 6L-Perowskit $(Ba_2Ti_2O_6)$ abweichenden Zusammensetzung von Ba_2ScAlO_5 das gesamte Defizit an O^{2-} von einer Sauerstoffschicht bei z = 0.25/0.75 getragen wird. Unter Berücksichtigung der Röntgenreflexe $F_{0} > 6\sigma(F_{0})$ finden wir ebenfalls zusätzliche Elektronendichtemaxima in dieser Sauerstoffschicht. Diese können in Verbindung mit den interatomaren Abstände jedoch nur alternativ besetzt sein. Werden jedoch auch intensitätsschwache Reflexe $(F_o > 1\sigma(F_o))$ hinzugenommen, so ist in den Fouriersynthesen für O(2) nur noch ein Elektronendichtemaximum zu beobachten. Der Wert des Temperaturfaktors verbessert sich auf B = 1,12 und das Sauerstoffdefizit beschränkt sich auf eine definierte Lage.

Überraschend war das Ergebnis des Austausches von Ba²⁺ gegen Sr²⁺ bei gleichzeitiger Verschiebung des Verhältnisses Sc:Al von 1:1 zu 0,25:0,75. Die Röntgenstrukturanalyse von Sr₂Sc_{0,5}Al_{1,5}O₅ zeigt, daß diese Phase nicht mit α -Ba₂ScAlO₅ isotyp ist, sondern zu den kubischen Perowskiten gehört. Auch hier sind die Ionen Sc³⁺- und Al³⁺-Ionen partiell geordnet, jedoch in inverser Weise. In Ba₂ScAlO₅ enthält die geordnet besetzte Punktlage nur Sc³⁺- in Sr₂Sc_{0,5}Al_{1,5}O₅ dagegen nur Al³⁺-Ionen, so daß bei der letztgenannten Substanz kleinere (eng schraffiert) und größere Oktaeder (weit schraffiert) entstehen. Ähnliche Größenunterschiede der Polyeder zeigte Sr₂BiNdO₆ [17], jedoch mit total geordneter Verteilung von Bi³⁺ und Nd³⁺.

Für die in $Sr_2Sc_{0.5}Al_{1,5}O_5$ vorgegebene Ordnung von Al^{3+} auf die Punktlage 4a und statistische Besetzung mit Sc^{3+}/Al^{3+} von Punktlage 4b ergibt sich eine Einschränkung der Phasenbreite für $Sr_2Sc_{2-x}Al_xO_5$ auf $x \ge 1,0$. Unterschreitet x den Wert von 1,0 muß Sc^{3+} die kleinen Oktaeder mitbesetzen.

Der vergleich mit Abb. 1 zeigt, daß durch den Austausch von Ba²⁺ gegen Sr²⁺ das güngstige Größenverhältnis der Ba²⁺-Ionen zu den flächenverknüpften M_2O_9 -Oktaederdoppeln gestört wird. Der α -Ba₂ScAlO₅-Typ wird durch den Einbau von Sr²⁺ zugunsten der kubischen Perowskitstruktur verlassen womit zugleich erklärt wird, weshalb es bisher nich gelungen ist einen Mischkristall der Formel BaSrScAlO₅ darzustellen.

 $Sr_2Sc_{0,5}Al_{1,5}O_5$ weist ebenfalls ein Sauerstoffdefizit auf. Unter Bezug auf die große Elementarzelle von

Abb. 1. Perspektivische Darstellung der Polyederverknüpfung im Bereich einer Elementarzelle von α -Ba₂ScAlO₅. Die eng schraffierten Oktaeder sind mit Sc³⁺ und Al³⁺, die weit schraffierten mit Sc³⁺ besetzt: große Kugel mit Segment, Ba²⁺; kleine offene Kugel, O²⁻.

Abb. 2. Perspektivische Darstellung der Polyederverknüpfung von $Sr_2Sc_{0,5}Al_{1,5}O_5$. Die eng schraffierten Oktaeder sind mit Al^{3+} , die weit schraffierten mit $Sc^{3+}:Al^{3+}=1:1$ besetzt: große Kugel mit Segment, Sr^{2+} ; kleine offene Kugel, O^{2-} .

Abb. 2 verteilt sich der Unterschuß von 4 O^{2-} gleichmäßig über die Punktlage 24d.

Alle Rechnungen wurden auf der elektronischen Rechenanlage VAX 8550 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Program [18, 19] erstellt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich technische Zusammenarbeit mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-, des Autors und Zeitschriftenzitats angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Literatur

- 1 E. F. Bertaut, P. Bluhm und A. Sagmieres, Acta Crystallogr., 12 (1959) 149.
- 2 A. A. Colville, Acta Crystallogr., Sect. B, 26 (1970) 1469.
- 3 P. K. Gallacher, J. B. MacChesney und P.N.E. Buchenau, J. Chem. Phys., 41 (1964) 2429.
- 4 P. K. Gallacher, J. B. MacChesney und P. N. E. Buchenau, J. Chem. Phys., 43 (1965) 516.
- 5 M. Harder und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 464 (1980) 169.
- 6 D. K. Smith, Acta Crystallogr., 15 (1962) 1142.
- 7 A. A. Colville und S. Geller, Acta Crystallogr., Sect. B, 27 (1971) 2311.
- 8 R. v. Schenck und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 396 (1973) 113.
- 9 R. v. Schenck und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 405 (1974) 197.
- 10 M. Mannsmann, Z. anorg. allg. Chem., 339 (1965) 52.
- 11 E. V. Antipov, L. N. Lykova und L. M. Kovba, Koord. Khim., 11 (1985) 1151.
- 12 E. V. Antipov, R. V. Shpanchenko, L. N. Lykova und L. M. Kovba, Sov. Phys.-Crystallogr., 35 (1) (1990) 129.
- 13 R. V. Shpanchenko, E. V. Antipov, L. N. Lykova und L. M. Kovba, Vestn. Mosk. Univ., Khim., 31 (1990) 555.
- 14 Hk. Müller-Buschbaum und M. Abed, Z. anorg. allg. Chem., 591 (1990) 174.
- 15 EMPIR, Psi-Scan Programm, Stoe, Darmstadt.
- 16 G. M. Sheldrick, SHELX76, Program for Crystal Structure Determination, Cambridge, 1976.
- 17 A. Lenz und Hk. Müller-Buschbaum, J. Less-Common Met., 161 (1990) 141.
- 18 C. K. Johnson, Rep. ONRL-3794, Oak Ridge National Laboratory, TN, 1965.
- 19 K.-B. Plötz, Dissertation, Universität Kiel, 1982.